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A B S T R A C T

Most proliferating cancer cells and cancer-associated tumor stroma have an upregulated glucose energy demand
in relation to normal cells. Cancer cells are further less metabolically flexible than normal cells. They can
therefore not survive metabolic stress as well as normal cells can. Metabolic deprivation thus provides a potential
therapeutic window.

Unfortunately, current glucose blockers have toxicity problems. An alternative way to reduce a cancer pa-
tient’s blood glucose (BG), for a short-term period to very low levels, without the concomitant toxicity, is hy-
pothesized in this paper.

In vitro tests have shown that short-term BG deprivation to 2mmol/L for 180min is an effective cancer
treatment. This level of hypoglycaemia can be maintained in vivo with a combination of very low-dose insulin
and the suppression of the glucose counter-regulation system. Such suppression can be safely achieved by the
infusion of somatostatin and a combination of both α and β-blockers.

The proposed short-term in vivo method, was shown to be non-toxic and safe for non-cancer patients. The next
step is to test the effect of the proposed method on cancer patients. It is also suggested to incorporate well-
known, long-term BG deprivation treatments to achieve maximum effect.

Background

Preamble

The majority of cancer-associated deaths are due to solid metastatic,
mostly glucose-addicted cancers [1]. The high glucose uptake by many
cancer cells compared to normal cells, creates a therapeutic window
[2–6].

Metabolic deprivation treatment has a different effect on normal
healthy cells than on malignant cells [6,7]. Normal cells have metabolic
flexibility in order to survive under metabolic stress. Malignant cells on
the other hand lack this flexibility, due to cumulative genetic mutations
[8]. This difference can be exploited in cancer treatment.

The research group has therefore previously published work on
metabolic strategies to treat highly glycolytic cancers and metastases
(HGCM) via lifestyle interventions, drugs and/or haemodialysis
[6,9,10]. These hypothetical strategies proposed various levels of me-
tabolic treatments for HGCM.

A recent article by Seyfried et al. proposed a series of similar stra-
tegies called a Press-Pulse metabolic cancer treatment [7]. The Press-
Pulse treatment is based on an evolutionary concept dealing with evo-
lutionary extinctions after gradual environmental changes (Press) or
after acute disruptive events (Pulse) [7,11]. However, both Press and
Pulse left some species alive, either through survival of the fittest in the
Press or through the physical and biotic environments recovering to
their pre-disturbance equilibria in the Pulse. It was thus only when both
Press and Pulse occurred simultaneously that mass extinctions without
recovery occurred [7,11].

The metabolic Press therapy for cancer treatment envisaged by
Seyfried et al. inter alia entails the long-term management of blood
glucose (BG) levels. This is done via a Ketogenic Diet as well as psy-
chological stress reduction [7]. For the short-term metabolic Pulse
therapy, glucose and glutamine inhibitors are inter alia suggested [7].
Other non-metabolic therapies i.e. hyperbaric oxygen, chemo and ra-
diation therapy can also be used as a Pulse therapy [7]. The metabolic
inhibitors have some problems with toxicity [7].
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In this article the authors propose to add a non-toxic metabolic Pulse
treatment to the work of Seyfried et al. [7]. The full strategy is also a
Press-Pulse strategy. In the proposed strategy, the lifestyle intervention
(Restricted Ketogenic Diet (KD-R)) [6,7] in combination with stress and
blood glucose suppression [6] via inter alia atenolol and metformin act
as the Press.

The hypothesized short-term, severe blood glucose restriction, is
new for cancer treatment and is via a combination of pharmacological
agents which act as the metabolic Pulse therapy. The patient’s BG values
can be dropped to very low levels, for short periods, in a safe manner. In
vitro tests showed that BG reduction to 2mmol/L for 180min can be an
effective cancer treatment [12].

Although BG is usually the main fuel for HGCM cells, glutamine is
also an important fuel [4,6,13,14]. The authors have not yet found a
similarly non-toxic method of reducing glutamine levels. The current
hypothetical treatment methodology focuses solely on glucose depri-
vation and thus on HGCM treatment. Glutamine deprivation is however
a large field to cover and as such deserves a more in-depth analysis. A
non-toxic Pulse treatment for glutamine will therefore be the focus of a
follow-up paper.

Current metabolic control strategies

Short-term (Pulse) pharmacological glucose and glutamine deprivation
strategies

The currently recommended glycolysis inhibitor, 2-deoxyglucose (2-
DG), has been shown to have therapeutic effects when used in combi-
nation with a Restricted Ketogenic Diet (KD-R). However, toxicity has
been found with 2-DG [7].

Various compounds are also studied to inhibit the glutamine me-
tabolism cycle by targeting either glutaminase, glutamine transporters
or inhibiting glutamine directly [15]. A recent review reported that the
three most studied inhibitors namely acivicin, 6-diazo-5-oxo-L-norleu-
cine (DON), and azaserine all revealed degrees of gastrointestinal
toxicity and neurotoxicity [16].

The current strategies for the short-term (Pulse) deprivation of both
glucose and glutamine thus have some problems with the toxicity of the
blockers used in the treatment. There is however potentially an alter-
native way to severely reduce a patient’s blood glucose without the
concomitant toxicity present in the use of glucose blockers. Such a new
Pulsemethod for cancer treatment will be discussed in this paper. Short-
term non-toxic glutamine deprivation will be discussed in a future
paper.

Long-term (Press) glucose deprivation strategies
In 1921 Wilder developed the Ketogenic diet for the treatment of

epilepsy [17]. In recent years the Ketogenic diet has also shown ther-
apeutic effects as a cancer treatment when used in combination with
various therapies [18].

These therapies are documented in preclinical studies for several
cancers including; breast and ovarian [19,20], colon [21], gastric [22],
lung [23,24], neuroblastoma [25,26], pancreatic [23,27] and prostate
[28–30] cancers. The preclinical and clinical studies not only improve
the treatment effectiveness of conventional therapies, but can safely be
applied in cancer patients [23].

The KD-R consists of a standard Ketogenic diet combined with re-
stricted calorie intake. A standard Ketogenic diet in turn consists of a
high fat and low carbohydrate and protein diet, where the ratio of fats
to carbohydrates and proteins is usually 3:1 or 4:1 [31]. Therefore, by
decreasing carbohydrate and calorie intake, the KD-R acts as a long-
term glucose deprivation therapy via the reduction of circulating glu-
cose and insulin levels, while elevating ketone bodies [32].

With the reduction of glucose levels, cellular energy is reduced by
decreasing glycolytic and pentose phosphate pathways [2,33]. The
body makes up for this energy by generating water-soluble ketone
bodies (D-β-hydroxybutyrate and acetoacetate) in the liver from

adipocyte-derived fatty acids and ketogenic dietary fat. This state is
known as nutritional ketosis.

Many types of peripheral cells, including brain cells, do not only use
glucose to produce acetyl-CoA for the production of adenosine tripho-
sphate, but can also use ketone bodies. The body is thus forced to burn
fat instead of glucose for the generation of energy [33]. Nutritional
ketosis can be maintained by the addition of exogenous ketone sup-
plements, such as medium-chain triglycerides, ketone salts and/or es-
ters [34].

Antidiabetic (BG reducing) medicines such as metformin could be
used as a long-term (Press) BG deprivation strategy [6,7]. Metformin
shows a reduced incidence of many different types of cancers, mimics
aspects of nutritional deprivation and lowers cancer mortality [35].
Metformin decreases basal glucose by suppressing hepatic gluconeo-
genesis and glycogenolysis, as well as by increasing glucose uptake in
muscle tissue [36]. It also increases free fatty acid utilization, insulin
sensitivity and decreases blood insulin levels [36].

Stress is inter alia an important contributor to high levels of BG
[6,37] as well as elevated levels of glucocorticoids, catecholamines and
insulin-like growth factor (IGF-10) all of which promote tumorigenesis
[7]. Successful long-term strategies should thus also include the stress
management of cancer patients. Multiple stress management techniques
such as exercise [6], yoga, music, etc. in addition to pharmacological
methods may be used [7].

Methods

Preamble

The proposed metabolic treatment includes both long-term (Press
[7]) and short-term (Pulse [7]) glucose deprivation strategies. Fig. 1
shows the treatment methodology schematically and will be described
in more detail in the rest of the article.

All of the suggested procedures are standard, although some pro-
cedures are only standard in non-cancer patients. Therefore, in Fig. 1
the procedures are separated into two categories namely standard
procedures in cancer patients and standard procedures in non-cancer
patients. These two categories are denoted by different coloured check
marks in the individual procedures. The important message is that all
elements of the suggested treatment have already been proven to be
safe for humans.

Cancer identification

Firstly, patients should undergo cancer identification in order to
ensure that their cancer is sufficiently glucose avid for the treatment to
have an effect. This should be done by using current glucose based
positron emission tomography (PET), as shown for Visit 2 in Fig. 1. A
non-metabolisable glucose analogue, fluorodeoxyglucose (FDG) is used
[38].

A semi-quantitative method, namely standardized uptake value
(SUV), should be used to determine the glucose analogue (FDG) uptake
[39]. With the evidence of untreated solid tumors typically having a
mean SUV value greater than 5.0 [6], it is suggested that only patients
with a SUV higher than 5.0 should initially be included in this therapy.
This will ensure a high probability that the treatment will show effect.

A modified version of the PET response criteria in solid tumors
(PERCIST) evaluation criteria [40], should be used in combination with
standard FDG-PET scanning. This will distinguish the metabolic and
physical characteristics of the tumor, before and after the glucose-de-
privation therapy (Visits 2 and 4 in Fig. 1).

Proposed long-term glucose deprivation (Press)

Long-term glucose deprivation should be done via dietary control
and restriction as well as the use of metformin and stress reduction via
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orally administered β-blockers. Metformin will be administered at a
single dose of 500mg per day as per nondiabetic patients. This will be
adjusted according to the patients BG level [41].

A recent phase two clinical trial reported on the safety and efficacy
of pharmacologically inhibiting β-adrenergic and cyclooxygenase-2
pathways in breast cancer patients via propranolol and etodolac [42]. It
was concluded that these inhibitors provided a safe and effective
strategy to inhibit multiple cellular and molecular pathways related to
metastasis [42].

However, research shows that long-term use of the β-blocker pro-
pranolol slightly increases non-diabetic patients’ BG levels [43]. Re-
search also shows that propranolol reduces mitochondrial metabolism
in healthy tissue [44]. Fortunately, a selective β1-blocker, namely ate-
nolol, has been shown not to have a significant effect on glucose me-
tabolism [45]. It will therefore be administered to the patients to reduce
stress levels. The dosage will be individualized based on the patients’
response to an initial daily dosage of 50mg [46]. The dosages of both
metformin and atenolol will be adjusted in the weeks leading up to
Visits 3.1–3.3 as seen in Fig. 1.

KD-R can act as a long-term glucose deprivation therapy, whereby
circulating glucose and insulin levels reduce while ketone bodies are
elevated [27,33,47]. The long-term glucose deprivation should start at
Visit 1, in Fig. 1, with the screening visit.

Patients should follow a personalized KD-R throughout the entire
treatment. In order to ensure efficacy of the therapeutic effects on
HGCM patients, the glucose-ketone index (GKI) of each patient should
be monitored via a glucose-ketone index calculator (GKIC) [48]. The
patients will undergo a GKI test before each visit, as seen in Fig. 1. A
GKI value of less than 2.0 (preferably 1.0) will ensure that the patient is
in a manageable ketosis state [48], thus strictly adhering to the KD-R.

Hypothesized short-term glucose deprivation (Pulse)

A combination of in vitro studies [12,49] on short-term glucose-
deprivation on cancer cells was used to deduce therapeutic periods and
the desired blood glucose level required for the present Pulse treatment.
The current target level of glycaemia is 2mmol/L [12]. This can be
achieved by a combination of low-dose insulin and suppression of the
glucose counter-regulation system [50].

Such suppression can be safely done by continuous infusion of so-
matostatin (to suppress glucagon secretion) and a combination of both
α and β-blockers (specifically the adrenergic antagonists, phentolamine
and propranolol), to block epinephrine and norepinephrine actions
[50,51]. Short-term use of the β-blocker propranolol has been shown to
impair glucose recovery from insulin induced hypoglycaemia [52]. This
will be beneficial for the short-term (Pulse) treatment.

The proposed procedure was successfully carried out in non-cancer
patients by Rizza, Cryer and Gerich in 1979 [50]. It was clinically tested
on human participants for an inter alia 90min duration at 2mmol/L
blood glucose level.

The proposed short-term glucose deprivation will be a replication of
the Rizza, Cryer and Gerich method [50] as the procedure already has
ethical approval for non-cancer patients. The only suggested differences
will be to firstly double the therapeutic time to 180min, in order to
coincide with our in vitro tests [12,49]. The second difference will be
the addition of two or three repeating treatments separated by two days
(as seen in Visits 3.2 and 3.3 in Fig. 1).

As it is known that cancer patients have unpredictable responses to
various treatments, the short-term (Pulse) therapy could initially be
tested for shorter time frames. Physiological and psychological re-
sponses to acute hypoglycaemia could then be assessed.

Fig. 1. Proposed Press-Pulse cancer treatment. Note: Fluorodeoxyglucose based Positron Emission Tomography (FDG-PET), Electrocardiography (ECG), Glucose
Ketone Index (GKI), Restricted Ketogenic Diet (KD-R).
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Although not part of the initial Rizza, Cryer and Gerich method, it
should also be investigated to administer exogenous ketone supple-
ments, such as a medium-chain triglycerides l, ketone salts and/or es-
ters to the patients. This should elevate ketone levels to ensure further
safety of the brain [33].

Suppression of glucose counter-regulation

In order to achieve blood glucose levels of approximately 2mmol/L
an initial administration of low-dose (0.04 IU/kg) rapid-acting insulin
should be administered to the patient [50], illustrated in Fig. 1 as the
“Infusion of Low-dose Insulin” step of Visit 3. Such a dose typically
achieves blood glucose concentrations of 2mmol/L within 15min
[50,53]. After the first dose of insulin, the patient should also be given a
combination of drugs to suppress blood glucose counter-regulation le-
vels for 180min, referred to as the “Hypoglycaemic Clamp” step of Visit
3 in Fig. 1.

The suppression of glucose counter-regulation has previously been
achieved by the combination of somatostatin, phentolamine and pro-
pranolol. The dosages for the respective drugs will be somatostatin at
250 µg/h, phentolamine at 500 µg/min and propranolol at 80 µg/min
[50]. However, glucose slowly appears in the plasma during such in-
fusion of these suppressors (which is an inherent safety feature).
Therefore, in order to maintain blood glucose levels at 2mmol/L,
supplementary low-dose insulin (0.014 IU/kg) should be administered
if necessary.

General effects of pharmacological agents

Glucose counter-regulation agents have various effects on the
adrenergic system. The two adrenergic blockers that will be used in this
treatment are α and β-blockers. Adrenergic blockers bind to adrenergic
receptors, α receptors (located on nerves) or β receptors (located in
smooth muscles of the heart, bronchioles, arterioles and visceral or-
gans), but inhibit or block stimulation of the sympathetic nervous
system [54].

For the sake of the proposed treatment, α-blockers and β-blockers
cause inhibition of both glycogenolysis and gluconeogenesis with α-
blockers also inhibiting glucagon release from the pancreas [54,55].

Somatostatin suppresses both glucagon and insulin secretion
[56,57]. Although somatostatin is naturally secreted from pancreatic δ-
cells (and in the hypothalamus) it is also available in synthetic form as
somatostatin analogues [56,57].

Safety of pharmacological agents used in Pulse treatment

Propranolol is a β-blocker, and has been shown to inhibit develop-
ment of metastases in vitro [58] and in vivo [59]. β-Clamps also sig-
nificantly reduce resting energy expenditure in cancer patients [60].
The long-term use of propranolol is further associated with less ad-
vanced disease at diagnosis and lower breast cancer-specific mortality
[61,62], improved prostate cancer survival and reduced metastases
[63].

Up to 30% of women with breast cancer suffer from anxiety and
depression, and a history of depression might predict cancer recurrence
and overall survival [64]. Perioperative stress and anxiety stimulates
the physiological stress response through the hypothalamic–pituitar-
y–adrenocortical axis and the sympathetic nervous system. This leads to
secretion of glucocorticoids, endogenous opioids, and catecholamines.
These responses lead to immunosuppression, which could promote
postoperative metastases [65]. Stress reduction should thus be bene-
ficial for cancer patients, during Pulse and Press therapies.

A large amount of evidence shows that stress hormones (epi-
nephrine and/or norepinephrine) induce a promoting effect on various
tumors, including but not limited to, cancers of breast, colorectal,
leukaemia, lung, melanoma, nasopharynx, oesophagus, ovary,

pancreas, prostate, hemangioendotheliom and angiosarcoma [66].
Epinephrine and norepinephrine both bind to β2-adrenoceptors and β1-
receptors respectively [66]. It has thus been proposed that β-adreno-
ceptor antagonists, such as propranolol and atenolol might inhibit some
of the deleterious effects of stress [66,67].

Somatostatin analogues (e.g. octreotide/sandostatin or lanreotide)
were found to inhibit growth of pancreatic and breast cancer cells in
vitro [56]. Somatostatin is also used for treating pituitary tumors, in-
sulinomas and carcinoid tumors [57,68]. Phentolamine has additionally
been used for alleviation of pain in some cancer patients [69].

Insulin is a naturally occurring peptide hormone produced by the β-
cells of the pancreatic islets. Although there are occasional problems
with using insulin, these tend to be problems with dosage administra-
tion [70]. The insulin dosages and the patient’s BG will thus be con-
tinuously monitored to ensure patient safety.

Unfortunately, insulin stimulates glycolysis. Also insulin receptors
are overexpressed in cancer cells, which drives cancer growth and
proliferation [6,71]. Although the insulin dose in this study is not ex-
cessive, similar to basal rates, the authors agree that the use of insulin is
not ideal. However, the proposed method has already been ethically
approved on non-cancer patients [50] and the authors will therefore not
stray from this method for the current study. Future research should
focus on alternative methods to reduce BG and simultaneously increase
ketone bodies, such as administering ketogenic hypoglycaemic agent
1,3-butanediol [72].

All pharmacological agents used in the proposed procedure are safe
for use by humans. It was further shown that most should also have a
positive effect on cancer control.

Controlling of cerebral glucose demand

For patient safety it is important to downregulate cerebral glucose
demand in a safe manner. This can be done by administering a relaxant
[73,74]. In this case the β-blocker propranolol will be used, as discussed
in Section “Suppression of glucose counter-regulation”. In addition,
supplemental oxygen will be administered via a cannula and two
prongs in the nostrils, as illustrated in Fig. 1 by the “Brain Relaxation”
step of Visit 3. This serves to reduce cerebral glucose metabolism by
approximately 20% [75].

Although the proposed glucose deprivation therapy has been carried
out previously on healthy patients without permanent adverse neuro-
logical effects [50], further caution will be taken with cancer patients.
This is discussed in the next section.

Initial extra patient safety precautions

To ensure patient safety, each patient should undergo the short-term
(Pulse) therapy in a controlled environment of a hospital ward setting.
Furthermore, an oncologist and endocrinologist will continuously
monitor the patient and oversee the short-term stage of the proposed
glucose-deprivation therapy.

A patient undergoing the proposed glucose-deprivation therapy
might experience slight hypoglycaemic symptoms. Awareness of hy-
poglycaemia is mainly the result of the perception of neurogenic
symptoms [51], which are largely sympathetic-neural rather than
adrenomedullary [76]. Some neurogenic symptoms such as palpita-
tions, tremor, and anxiety are adrenergic whereas others such as
sweating, hunger, and paraesthesia are cholinergic [51]. Neuroglyco-
penic symptoms range from behavioural changes, fatigue, and confu-
sion to seizures and could result in loss of consciousness [51,77].

An important safety measure (as described earlier) is the reduction
of the cerebral glucose demands by inter alia providing conventional
supplementary oxygen. This would minimise possible hypoglycaemic-
induced neurogenic symptoms, when blood glucose is reduced to
2mmol/L. In general, recovery from any acute cognitive decrement
after severe hypoglycaemia is complete by 1.5 days [78].
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A value of 2mmol/L was found to be safe by Rizza, Cryer and
Gerich [50] without supplemental oxygen. We thus believe that blood
glucose levels can safely be lowered to less than 2mmol/L when sup-
plementary oxygen is administered. This is however a subject for a
future paper.

To further ensure safe treatment, emergency glucose infusion would
be on hand to correct for excessive hypoglycaemia. Continuous mon-
itoring of the following physiological parameters could also be done
initially: blood glucose levels (via blood-gas monitoring), electro-
cardiography (ECG), blood pressure, heart rate, saturation oxygen, sa-
turation carbon dioxide, arterial pH, Na+, K+, Ca2+ and Cl−, as illu-
strated in Fig. 1 by the “Continuous Monitoring of Vital Signs” step of
Visit 3.

In very successful cancer therapy it is possible that rapid cell death
of tumorous cancer cells can occur. These dead cancer cells may enter
autophagy (“self-eating”), apoptosis (“suicide”), or necrosis (“in-
flammatory cell death”) [79]. It is thus prudent to investigate how the
body will eliminate such dead cancer cells.

Acute tumour lysis syndrome results from rapid destruction of ma-
lignant cells and is characterized by hyperkalaemia, hyperpho-
sphotaemia, hypercalcaemia, or hyperuricaemia [80,81]. The symp-
toms of hyperkalaemia, hyperphosphotaemia, hypercalcaemia or
hyperuricaemia will continually be monitored during the proposed
glucose-deprivation therapy, by taking regular blood samples for blood
gas analysis of potassium, calcium, and phosphate.

If symptoms of hyperkalaemia (potassium>6mmol/L or 25% in-
crease from baseline), hyperphosphotaemia (phosphorous> 2mmol/L
or 25% increase from baseline), hypercalcaemia (calcium>1.75
mmol/L or 25% change from baseline), or hyperuricaemia (uric
acid> 476 µmol/L or 25% increase from baseline) persist [80,82,83],
the patient should be infused with intravenous fluid consisting of iso-
tonic sodium bicarbonate to ensure normal levels of potassium, calcium
and phosphate are reached [83,84]. To obtain normal levels of uric
acid, rasburicase (or allopurinol) should be administered intravenously
at 0.1–0.2 mg/kg over 30min [80,83,84].

Regarding safety of the long-term (Press) therapy, the KD-R has
been proven safe [23]. The safety of atenolol, for stress suppression, has
been established in the more than 30 years it has been in use [85]. A
potential risk factor in using metformin for long-term deprivation is
metformin-associated lactic acidosis.

Although this is a potential risk, it is low even in patients with
stable, mild to moderate renal impairment. Monitoring of estimated
glomerular filtration rate (EGFR) is thus important to ensure met-
formin-associated lactic acidosis does not occur in patients. A reduction
in the metformin dosage is recommended when EGFR is between 30
and 45mL/min/1.73m2 and discontinuation of metformin if EGFR
is< 30mL/min/1.73 m2 [86].

If needed, this could also be mitigated by the administration of di-
chloroacetate (DCA), which has been used clinically as an investiga-
tional drug to treat lactic acidosis [87]. Substantial evidence in pre-
clinical in vitro and in vivo models show that DCA might have an anti-
cancer effect [88].

Discussion and conclusion

Normal cells have a much lower BG demand than most cancer cells.
They are also more metabolically flexible as they can efficiently me-
tabolize nutrients other than glucose (and glutamine). To capitalize on
this therapeutic window a BG deprivation treatment method was pro-
posed. (A non-toxic treatment to inhibit glutamine will be discussed in a
follow-up paper).

The long-term (Press) BG therapy is well-known and was shown to
be effective and safe [17,34]. For the hypothesized Pulse therapy the
following: In vitro tests showed that highly glycolytic cancer cells can be
severely affected if BG can be reduced to 2mmol/L for 180min [12]. It
is hypothesized that if this Pulse therapy is used in vivo and repeated, the

cancer cells should potentially receive a mortal blow. The proposed
procedure has been safely applied to non-cancer patients [50]. A
method to test the hypothetical treatment was also discussed.

The proposed Pulse metabolic treatment provides a method to se-
verely reduce blood glucose supply in cancer patients without the toxic
effects that posed problems in earlier works [7]. This methodology
however only focuses on solving the problem of reducing the blood
glucose supply and as such there is a large scope for further refinement
of the methodology by combination with other non-metabolic factors.

Cancer cells are shown to be more vulnerable to chemotherapy and
radiation, after their metabolic demands have been suppressed [7];
therefore further research of combination therapies is imperative [6,7].
This would identify potential targets for metabolic therapies in com-
bination with chemotherapy, radiation and/or hyperbaric oxygen for
the ongoing battle against cancer [6,7].
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